
F L O W  O F  A V I S C O U S  GAS IN A S H O C K  L A Y E R  

W I T H  E Q U I L I B R I U M  C H E M I C A L  R E A C T I O N S  

I .  M.  B r e e v  a n d  Y u .  P .  G o l o v a c h e v  

Steady flow of superson ic  a i r  ove r  a sphere  is examined,  aUowing for  v i scos i ty ,  heat  
conduction, and actual  physica l  and chemica l  p r o c e s s e s .  Flow in the shock l aye r  at  
flight speeds  in the range  3 k m / s e c  -<Vr ~ 10 k m / s e c  (104-<R~ -< 106) is invest igated,  
under the a s sumpt ion  of local  t he rmodynamic  equi l ibr ium.  The flow is desc r ibed  by 
s impl i f ied  Nav ie r -S tokes  equations,  which a re  solved by a finite difference method.  
The case  of a cooled sur face  is examined.  The distr ibution of gasdynamic  p a r a m e t e r s  
is obtained in different  flow r e g i m e s .  The distr ibution 0f heat  flux and fr ic t ion coef -  
f icient  is inves t iga ted  as a function of the oncoming- s t r eam p a r a m e t e r s  and the sphere  
rad ius .  The shape and posi t ion of the shock wave a r e  de termined,  and the s t r e a m  lines 
and sonic l ines  a r e  cons t ruc ted ,  

For  a gas  with constant  specif ic  heat,  at  Reynolds numbers  Rr -~ 103, supersonic  flow over  blunt bod- 
ies has been cons ide red  in t e r m s  of the s impl i f ied  and the full Navie r -S tokes  equations in [1-4]. 

1. We cons ider  flow in the region ABCD (Fig. 1) enclosed between the detached shock, the body s u r -  
face ,  the axis of s y m m e t r y ,  and the su r face  ~r. The sur face  7r is chosen so that  the downs t ream flow should 
not apprec iab ly  affect  the gas  p a r a m e t e r s  in the region ABCD. The s impl i f ied  Nav ie r -S tokes  equations 
used,  given in [1], contain the full t e r m s  of the gasdynamic  equations of an inviscid flow and the boundary  
l aye r  equat ions.  

All quanti t ies  a r e  nondimensional ized as follows (p r imes  denote d imens ionless  quanti t ies) :  
x y r $ 

z ' - - - -  y ' _  , r" = - -  0 - -  
- -  To ~ r o  r o  ~ r o  

v u 
~'=--7, v'=~, u'=V.~, v~=v~+2h~ 

h p p T 

h '  ~ x/~Vm~ , P" - -  Pco ' p"  - -  pooVm~ , T" - -  (moo / 

Vmro9oo R ~  

Here  x and y a r e  r ec t angu la r  coord ina tes ,  x d i rec ted  ups t r eam;  r and 0 a re  spher i ca l  polar  coord i -  
nates ;  u and v a r e  the r and 0 components  of ve loc i ty  V, respec t ive ly ;  ~ is the shock-wave  standoff  dis tance;  
h is the enthalpy; p is the density; p is the p r e s s u r e ;  T is the t empera tu re ;  Vm is the m a x i m u m  veloci ty ;  
r 0 is the sphere  rad ius ;  m~ is the mo lecu l a r  weight;  R ~ is the un iversa l  gas constant;  it is the dynamic v i s -  
cosi ty;  X is the total heat  conduction; R is the Reynolds number ;  P is the Prandt l  sca le  number ;  its, l s  ~are 
the va lues  of it and X behind the shock, on the axis  of s y m m e t r y ;  the subsc r ip t  ~ denotes va lues  of the pa -  
r a m e t e r s  in the oncoming s t r e a m .  

I n  d imens ion less  v a r i a b l e s  the or iginal  s y s t e m  of equations has the f o r m  (pr imes  on the d imens ion-  
l e s s  quanti t ies  a r e  omitted) 
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p = 0(P, T), h =  h(p, T) 

For  the numerica l  solution it is convenient to conver t  to the new independent var iables  

r -- G (0) 
--~ F(0)--G(0) ' C~---O (1,2) 

and to c o m p r e s s  the coordinate l ines ~ =cons t  towards the body surface by means of the t ransformat ion  

ln(i + VRr 
~ =  ln(~ + V~-7- (1.3) 

The boundary conditions become as follows. The bow shock is considered as a surface of separat ion,  
the conditions at  it a re  determined by the Rankine-Hugoniot relat ions,  and its location is found during the 
solution. Symmet ry  conditions are  used on the axis 0 = 0. The conditions at  the body surface take the fo rm 

u = O, v = O, T = const (1.4) 

The body surface  t empera tu re  is a s sumed  to be 2000~ 

The approximations of [5] were  used for the thermodynamic functions of air ,  The viscosi ty  and the 
total thermal  conductivity were  taken f rom [6]. 

The solution was obtained by a finite difference method, using a nine-point scheme.  The sys tem of 
difference equations, undetermined at the as-yet-unknown location of the shock, was closed by using at the 
body surface  a project ion of the momentum equation along the z axis.  The nonlinear sys tem of difference 
equations was solved by Newton's method. 

The calculat ions were  pe r fo rmed  in the following range of initial conditions: 

io ~ Moo ~ 34, 0.0002 arm ~.~ Pco ~ 0.004atm (i0 a ~ R ~ i0 a) 

This determined the shock standoff distance, the gasdynamic pa rame te r s  in the shock layer ,  the fr ict ion 
s t r e s s  ~', and the heat flux q to the body surface:  

Or I 

q OT [ q , =  
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2. F igure  2 shows the locat ions  of the shock,  the sonic l ine (solid l ine),and the s t r e a m l i n e s  (broken 
l ines)  for  Moo =10, T~  =250~ p~ =0.001 a tm.  Figure  3 shows the dis t r ibut ions of enthalpy h and reduced  
densi ty Po' =P/Po a c r o s s  the shock l a y e r  (P0 is the density at the s tagnat ion point) for  M~ =33.75, T~  =240.6~ 
p~ =0.0002234 a tm,and  va r ious  va lues  of the longitudinal coordinate  0. For  ~ ~ 0.1 the enthalpy has  a m a x -  
i m u m  and the density a min imum.  This  nonmonotonic nature  becomes  more  pronounced with i nc r ea se  of 
0. F igure  4 shows the va r i a t ion  of f r ic t ion  fac to r  c f  (M~ =20, T~o =250~ flux q (P~o =0.001 a tm,  
T~ =250~ along the su r face  of the sphere  r0=1.5  m.  It can be seen that the heat  flux d e c r e a s e s  with de-  
c r e a s e  of lVI~, and its prof i le  becomes  near ly  l inea r .  The solid line of Fig. 5 shows the standoff  dis tance 
along the axis  of s y m m e t r y  a 0 as a function of the f r e e - s t r e a m  ve loc i tyV~ (p~ = 0.001 a tm).  The broken  
line shows the calcula t ions  for  an inviscid  gas  by scheme  II of the method of in tegra l  r e l a t ions  [2]. Allow- 
ance for  the v i s cos i t y  and the hea t  conduction of the gas  leads toan  inc rease  of 10-12% in the s tandoff  d i s -  
tance  in the ve loc i ty  range  cons idered .  F igure  6 shows the dis t r ibut ion of r educed  heat  flux q0' =q/q0 (qo 
is  the flux at  the s tagnat ion point) along the sphe re  su r face  and a compar i son  with r e s u l t s  f r o m  boundary 
l a y e r  theory .  I t  should be noted that the heat-flux va lues  for  the different  Mach number s  10 -< M~ -< 30 and 
va r ious  p r e s s u r e s  in the f r ee  s t r e a m  0.0004 a tm-<p~  ~0 .004  a t m  prac t i ca l ly  coincide on a s ingle  curve  
(solid line), conf i rming  the conclusion r eached  in [7] that  the heat-flux dis tr ibut ion ove r  a sphere  is  uni-  
v e r s a l  for  M~ >10 and h0<< h s. The dotted line shows the approximat ion  of [7] 

qo' ~ 0.55 ~- 0.45 cos 20 

The dot -dash  line shows the r e s u l t s  of [8], ca lcula ted  in the approximat ion  of loca l  s e l f - s i m i l a r i t y  
of the boundary l aye r  equations.  The points a r e  the expe r imen ta l  data of [8]. 

The au thors  thank Yu. 1 ~. Lun 'kin  and F. D. Popov for  the i r  help in formulat ing the p r o b l e m  and the i r  
constant  in t e res t .  

LITERATURE CITED 

1. A . I .  Tols tykh,  "Numer ica l  solution of supersonic  flow of a v i scous  gas  over  blunt bodies ,"  Zh. Vy-  
chis l i t .  Matem.  i Matem.  Fiz . ,  6,  No. 1 (1966). 

2. "Flow of superson ic  gas  over  blunt bodies,  . T r ,  VTs AN SSSR, No. 2 [in Russian] ,  Moscow (1967). 
3. B . M .  Pavlov,  "Computat ion of supersonic  flow over  blunt bodies using the full Nav ie r -S tokes  equa-  

t ions,  " Izv.  Akad. Nauk SSSR, Mekhan. Zhidk. i Gaza,  No. 3 (1968). 
4. V . K .  Molodtsov, "Numer ica l  calcula t ion of supersonic  flow of a v i scous  ideal gas  ove r  a sphe re , "  

Zh. Vychis l i t .  Matem.  i Matem.  Fiz . ,  9 ,  No. 5 (1969). 

663 



5. V.V. Mikhailov, "Approximate analytical representation for the thermodynamic functions for air," 
Inzh. Sb., 31 (1961). 

6. C . F .  Hansen, "Approximations for the thermodynamic and transport properties of high-temperature 
air," NASA TR, R-50 (1959). 

7. I .N.  Murzinov, "The laminar boundary layer on a sphere in a hypersonic stream of equilibrium dis- 
sociated air ," Izv. Akad. Nauk SSSR, Mekhan. Zhidk. i Gaza, No. 2 (1966). 

8. N.H.  Kemp, P. H. Rose, R. W. Detra, "Laminar heat transfer around blunt bodies in dissociated air ,"  
JASS, 2_~6, No. 6 (1959). 

664 


