FLOW OF A VISCOUS GAS IN A SHOCK LAYER
WITH EQUILIBRIUM CHEMICAL REACTIONS

I. M. Breev and Yu. P. Golovachev

Steady flow of supersonic air over a sphere is examined, allowing for viscosity, heat
conduction, and actual physical and chemical processes. Flow in the shock layer at
flight speeds in the range 3 km/sec =V, <10 km/sec (104 =R, =108)is investigated,
under the assumption of local thermodynamic equilibrium. The flow is described by
simplified Navier-Stokes equations, which are solved by a finite difference method.
The case of a cooled surface is examined. The distribution of gasdynamic parameters
is obtained in different flow regimes. The distribution of heat flux and friction coef-
ficient is investigated as a function of the oncoming-stream parameters and the sphere
radius. The shape and position of the shock wave are determined, and the stream lines
and sonic lines are constructed.

For a gas with constant specific heat, at Reynolds numbers R, =103, supersonic flow over blunt bod-
ies has been considered in terms of the simplified and the full Navier-Stokes equations in [1-4].

1. We consider flow in the region ABCD (Fig. 1) enclosed between the detached shock, the body sur-
face, the axis of symmetry, and the surface m. The surface 7 is chosen so that the downstream flow should
not appreciably affect the gas parameters in the region ABCD. The simplified Navier-Stokes equations
used, given in [1], contain the full terms of the gasdynamic equations of an inviscid flow and the boundary
layer equations.

All quantities are nondimensionalized as follows (primes denote dimensionless quantities):
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Here x and y are rectangular coordinates, x directed upstream; r and  are spherical polar coordi-
nates; u and v are the r and ¢ components of velocity V, respectively; € is the shock-wave standoff distance;
h is the enthalpy; p is the density; p is the pressure; T is the temperature; Vy, is the maximum velocity ;
rg is the sphere radius; m,, is the molecular weight; R° is the universal gas constant; u is the dynamic vis-
cosity; A is the total heat conduction; R is the Reynolds number; P is the Prandtl scale number; ug, Agiare
the values of u and A behind the shock, on the axis of symmetry; the subscript « denotes values of the pa-
rameters in the oncoming stream.

In dimensionless variables the origiﬁal system of equations has the form (primes on the dimension-
less quantities are omitted)
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For the numerical solution it is convenient to convert to the new independent variables
r—G(6)
t=F®y—c@ @ :=9 (1.2)
and to compress the coordinate lines ¢ =const towards the body surface by means of the transformation
_In(i+ VEy
T nd4 VR (1.3)

The boundary conditions become as follows, The bow shock is considered as a surface of separation,
the conditions at it are determined by the Rankine-Hugoniot relations, and its location is found during the
solution. Symmetry conditions are used on the axis § =0. The conditions at the body surface take the form

u=20 ©v=0, 7 = const (1.4)
The body surface temperature is assumed to be 2000°K.,

The approximations of [5] were used for the thermodynamic functions of air, The viscosity and the
total thermal conductivity were taken from [6].

The solution was obtained by a finite difference method, using a nine~point scheme. The system of
difference equations, undetermined at the as-yet-unknown location of the shock, was closed by using at the
body surface a projection of the momentum equation along the z axis. The nonlinear system of difference
equations was solved by Newton's method,

The calculations were performed in the following range of initial conditions:
10 < M, < 34, 0.0002 2tm < p, << 0.004atm (100 < R < 109)

This determined the shock standoff distance, the gasdynamic parameters in the shock layer, the friction
stress 7, and the heat flux q to the body surface:
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2. Figure 2 shows the locations of the shock, the sonic line (solid line),and the streamlines (broken
lines) for My =10, T =250°K, p,, =0.001 atm. Figure 3 shows the distributions of enthalpy h and reduced
density py' =p/p, across the shock layer (o, is the density at the stagnation point) for My, =33.75, T, =240.6°K,
Poo =0.0002234 atm,and various values of the longitudinal coordinate 6. For £~ 0.1 the enthalpy has a max-
imum and the density a minimmum. This nonmonotonic nature becomes more pronounced with increase of
6. Figure 4 shows the variation of friction factor ¢y (M, =20, Te =250°K) and'heat flux q (p, =0.001 atm,
Te =250°K) along the surface of the sphere ry=1.56 m, It can be seen that the heat flux decreases with de-
crease of M,,, and its profile becomes nearly linear. The solid line of Fig. 5 shows the standoff distance
along the axis of symmetry €, as a function of the free-stream velocityV,, (pw =0.001 atm). The broken
line shows the calculations for an inviscid gas by scheme II of the method of integral relations [2]. Allow-
ance for the viscosity and the heat conduction of the gas leadstoan increase of 10-12% in the standoff dis-
tance in the velocity range considered. Figure 6 shows the distribution of reduced heat flux q;' =q/qq (o
is the flux at the stagnation point) along the sphere surface and a comparison with results from boundary
layer theory. It should be noted that the heat-flux values for the different Mach numbers 10 =M,, =30 and
various pressures in the free stream 0.0004 atm =p,, =0.004 atm practically coincide on a single curve
(solid line), confirming the conclusion reached in [7] that the heat-flux distribution over a sphere is uni-
versal for M,, >10 and hy<«< hg. The dotted line shows the approximation of [7]

g0’ = 0.58 4 0.45 cos 20

The dot-dash line shows the results of [8], calculated in the approximation of local self-similarity
of the boundary layer equations. The points are the experimental data of [8].

The authors thank Yu. P. Lun'kin and F. D. Popov for their help in formulating the problem and their
constant interest,
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